Project ifchk: Host Based Promiscuous Mode Detection
and Handling

Joshua Birnbaum
Noorg, Inc.

engineer@noorg.org
www.noorg.org/ifchk

ABSTRACT

In the face of mounting threats to operating system and net-
work security, proactivity is fast becoming a necessity as op-
posed to a retrofitted afterthought. If made a central compo-
nent of site security policy, proactivity can go a long way
towards thwarting unauthorized access and usage of com-
puting resources. The timely application of operating sys-
tem patches, knowledge of current security related vulner-
abilities, frequent review of system log output along with
the use of well chosen security tools are just some examples
of how modern computing environments can withstand de-
termined attacks. ifchk (interface check) is a security tool
for network interface promiscuous mode detection, interface
management and traffic trend analysis. Written in the C pro-
gramming language and initially released under IRIX, an
SVR4 based Unix implementation from Silicon Graphics,
Inc. (SGI), ifchk is now in the final stages of a porting effort
to Linux.

1. INTRODUCTION

With the number of organizations and individuals partici-
pating in the networked world growing, there is a heightened
emphasis on maintaining the operational integrity of such a
communications infrastructure. Within the context of system
and network administration, such efforts are often a mix of
identifying security threats and maintaining acceptable lev-
els of operational performance. Sometimes, one is linked
to the other. In other cases, it is not. ifchk is a tool that
addresses both needs.

In this paper, we begin by elaborating on the motivations

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2004 Joshua Birnbaum and Richard L. Kline.

6.1

Richard L. Kline
Computer Science Department
Pace University
New York, NY USA

rkline@pace.edu

behind the creation of ifchk followed by a discussion con-
cerning network interface promiscuous mode operation. Pro-
gram functionality and an examination of program imple-
mentation issues then follow. This leads us into how the
ifchk core is structured from an algorithmic point of view.
We then review related work and conclude by discussing fu-
ture directions of ifchk development.

2. MOTIVATION AND BACKGROUND

There were three main motivators behind the writing of
the ifchk security tool. Firstly, the program author is a long
time user of open source software and wanted to respond in
kind by giving something back to the open source commu-
nity. Secondly, the author is an experienced Unix system
administrator who saw his entry into systems programming
as a powerful method to further explore Unix and Linux op-
erating system implementation. To this end, ifchk has paid
off handsomely. This exploration was further enhanced by
the porting effort, mentioned above, of ifchk from IRIX on
SGI to Linux. Differences in OS implementation, as they
relate to ifchk, allowed for the examination of different ap-
plication programming interfaces (API’s) on both systems.
Thirdly, it is hoped that ifchk can serve as a learning aid for
individuals who wish to engage themselves in systems pro-
gramming. Given that the ifchk source code is freely avail-
able, it is hoped that such individuals will take advantage of
the ability to review code and learn from it.

2.1 Promiscuous Mode Operation

Here, we begin our discussion of the theoretical underpin-
nings of the ifchk tool which will serve to create a contex-
tual foundation for what is to come. What is discussed here
is within the context of TCP/IP protocol stack (Figure 1) op-
erations and how they relate to core ifchk functions.

Data link implementations (e.g., ATM, Ethernet, etc), as
part of their design, will typically encapsulate the data that
they transmit within implementation specific units. These
units of data bear implementation specific names. For ex-

| Application | (FTP, SSH, packet sniffer, etc)
+

| Transport | (TCP, UDP)
+

| Internet | (1CvP, 1P, |GW)

network nedia (ATM Ethernet, etc)

Figure 1: The four layers of the TCP/IP protocol stack
along with what can be found at each layer.

ample, Asynchronous Transfer Mode (ATM) refers to units
of data as cells while Ethernet refers to them as frames.
(These units of data are often generically referred to as pack-
ets). This paper will concern itself primarily with Ethernet
and Ethernet frames as the majority of networks are Ethernet
based networks.

Upon receiving a frame, a network interface must make
some decisions as to how it is to process that frame. If the
frame was not corrupted in transit, (a determination made
by the network hardware via a CRC or Cyclic Redundancy
Check) it is handed off to the interface device driver at the
data link layer of the TCP/IP protocol stack. What happens
next is a function of frame destination address (ARP/MAC
address) and whether the interface is in promiscuous mode
or not. An interface running in non-promiscuous mode will
only read frames specifically addressed to its ARP/MAC ad-
dress (e.g., 08:00:20:4b:1e:24), the network broadcast ad-
dress (e.qg., ff:ff:ff:ff.ff:ff) and, if the interface is part of a
multicast group, the multicast group address (e.g., 01:00:
5e:00:40:20). All other frames are ignored and, as a result,
will not be copied from the network and passed up the pro-
tocol stack for further processing.

In contrast to the above, an interface running in promiscu-
ous mode is interested in ALL frames traversing the network
medium, and will pass every frame it receives up the pro-
tocol stack regardless of its destination ARP/MAC address
(often for further processing by a packet sniffer such as as
ethereal [3], tcpdump [10], etc.).

2.2 Examplesof Packet Sniffer Usage

Packet sniffing is a facility that allows us to read data di-
rectly from the network as it is in transit between systems.
The following examples illustrate packet sniffer usage:

e To pinpoint and debug network congestion/latency re-
lated problems stemming, for example, from faulty net-
work hardware (e.g., malfunctioning Ethernet switches),
misbehaving network services (e.g., slow NFS file ser-
vice performance) or denial of service attacks such as
ICMP broadcast storms.

e Reverse engineering. It is possible to gain a behavioral
understanding of how a networked application func-
tions, at the network protocol level, by observing its
interaction with the network. For example, the Samba
project made use of packet sniffing to observe how sys-
tems running Microsoft Windows communicated with
one another with a view towards the creation of a vi-
able file sharing utility compatible with both Windows
and Unix/Linux systems.

e Password and data theft (unfortunately). Not all net-
works are switched and RSH (Remote SHell) and Tel-
net, as opposed to SSH, still find usage on both inter-
nal and external networks. A packet sniffer can read
unencrypted RSH and Telnet application data with the
result that user keystrokes between the RSH or Telnet
client and server can be read verbatim.

Packet sniffing is somewhat stigmatized in that it is often
associated with less than honorable uses, as described above.
While packet sniffing does facilitate this kind of activity, the
ability to read raw network frames directly from the network
medium as an aid in the debugging of legitimate network re-
lated problems is a very powerful facility, as we have shown
in the examples above.

3. IFCHK FUNCTIONALITY

Before discussing ifchk functions, an examination of net-
work interface configuration under Unix and Linux is in or-
der. ifconfig, a standard administrative tool, is provided by
all vendors as part of the base operating system installation
procedure. The assignment of unicast, broadcast and mul-
ticast IP addresses to interfaces, the modification of rout-
ing metrics, the creation of interface aliases and the enabling
or disabling of interfaces are examples of common ifconfig
tasks. ifconfig will also display status and state information
for each interface (Figure 2).

The first line of output begins with an interface name. This
is a name that references a given network interface on the
system. On this Silicon Graphics workstation, ecO is the
primary (referenced by the 0 in ec0) Ethernet interface. The
fl ags=d63 <UP, BROADCAST, . .. > string following
ecO are the status and state flags for the interface. It is these
two pieces of data, the interface name and the flags output
that we are most interested in. Here, ecO is in promiscuous
mode as indicated by the displaying of the PROM SC flag.
The second line of ifconfig output describes the IP address,
subnet mask and broadcast address for interface ecO.

With the above foundation in place, we will now provide
a description of ifchk functionality. The program performs
the following functions:

ecO:
i net

fl ags=d63<UP, BROADCAST, NOTRAI LERS, RUNNI NG PROM SC, FI LTMULTI , MULTI CAST>
192.0.2.2 netmask OxffffffOO broadcast

192. 0. 2. 255

Figure 2: ifconfig output showing interface status and state.

1. ifchk will report on the state (nor nal , * down*,
PROM SC, PROM SC [*]) of each interface attached
to the system.

(@) The state nor mal refers to an interface that is up.
It is reading from and writing data to the network
and is not in promiscuous mode.

The state *down* refers to an interface that is
down. The system will not attempt to transmit
data over an interface in this state.

The state PROM SC refers to an interface that is
up. It is reading from and writing data to the net-
work and IS in promiscuous mode.

The state PROM SC [*] refers to an interface
that has been shutdown because ifchk was told,
by the user invoking the program, to shutdown
any interfaces found in promiscuous mode. The
interface then enters into the *down* state de-
scribed above.

(b)

(©

(d)

2. ifchk will shutdown all interfaces running in promis-
cuous mode, if told to do so.

3. ifchk will report per-interface traffic metrics to help
identify spikes in network traffic flow that may warrant
further investigation. This is similar to output gener-
ated by the netstat command. netstat, like ifconfig, is
standard on unix and linux systems and displays net-
work status information such as the contents of the in-
kernel routing table, integer counters describing both
ingress and egress packet counts and per-protocol (TCP,
UDP, ICMP, etc) statistics.

4. ifchk logs everything that it finds via syslogd (the Unix/
Linux system event logging daemon).

Console output from ifchk Linux (Figure 3) begins with a
count of interfaces present on the system and then proceeds
to describe the status of each.

interface(s): 6

| o: nornal

et h0: PROM SC [*]
bond0: *down*
gre0: *down*
tunl O: nornal
dunmyO: *down*

Figure 3: ifchk output under Linux.

6.3

Console output from ifchk IRIX on a Silicon Graphics
system with two interfaces (Figure 4) shows a dump of per-
interface ingress/ egress packet count information. Nare
refers to an interface name (e.g., ec0). | ndex refers to a
kernel assigned integer reference for that interface. | pkt s
is a count of ingress packets. Opkt s is a count of egress
packets.

* % % * % %

Network Interface Metrics

Narme I ndex I pkts Opkts
ecO 1 1479223 1843514
| 00 2 7112894 7112894

Figure 4: ifchk output under SGI IRIX.

The existence of the ifconfig and netstat programs with
their respective abilities to reveal promiscuous mode activity
(Figure 2) and display network status data raises a question.
What is the use of ifchk reporting this information if ifconfig
and netstat already do so? The answer to this question lies
in trojaned binaries. Attackers will often attempt to conceal
their presence on compromised systems so as to allow them
to fulfill their objectives, whatever those objectives may be.
This sometimes involves the erasure of legitimate ifconfig
binaries that will report promiscuous interface activity if the
attackers are carrying out any kind of network data recon-
naissance. Such binaries are supplanted with compromised
versions that will not report promiscuous activity even in the
event that an interface is in promiscuous mode.

Netstat, with its ability to display network packet ingress/
egress counts, can also be replaced with a trojaned version.
A legitimate netstat binary will increment packet counts by
one for every one packet traversing an interface. Consider,
however, if a trojaned binary was to increment packet counts
by one for every one hundred packets instead.

Recall that a promiscuous interface is not only process-
ing data addressed to it, but a copy of the data addressed
to all other systems on the network. This results in a much
larger volume of network data to process and, as a result,
elevated counts. Such a rise in packet count could alert sys-
tem administrators to the presence of possible unauthorized
activity. The above ingress/egress packet count compromise
could, however, aid in concealing such activity.

4. |FCHK IMPLEMENTATION

ifchk utilizes standard operating system services, as sup-
plied by IRIX and Linux, in order to implement its function-
ality. Examples include ioctl() system calls, the BSD sockets

| k

| e

ulr

s|n

el e

rl
o e e oo - - + | o m e a oo - +
| i f ¢ h k| ---- socket() ----- > | IR X or Linux |
| process | <--- descriptor ---- | kernel |
Fom e e oo + | Fom e e oo +

s|s
plp
al a
clc
ele

Figure 5: Socket creation prior to flag retrieval.

API and the Netlink/Rtnetlink API. These will be elaborated
upon below.

At its core, ifchk is concerned with getting and, if told to
do so, setting network interface status flags (Figure 2, line 1)
which are stored as members of interface specific in-kernel
data structures. How this is actually done is operating system
specific. IRIX uses ioctl() system calls exclusively while
Linux uses a combination of the Netlink/ Rtnetlink API and
ioctl(). Both methods will be elaborated upon later.

The manipulation of the data in these flags is a two stage
process. First, ifchk must establish a communications end-
point, from user space to kernel space, over which interface
operations are performed. This is done with the socket() sys-
tem call (Figure 5) as part of the BSD Sockets API. If suc-
cessful, the socket() call will return an integer file descriptor
referencing our communications endpoint with the kernel.

Under IRIX, ifchk then uses the file descriptor returned in
the previous step via socket() to send an ioctl() command,
as shown in Figure 6. The ioctl() system call provides a
facility to control devices such as terminals and and network
interfaces via the sending of device specific commands to
the kernel. We use ioctl() for the latter category of devices.
ioctl() accepts three parameters:

e asocket descriptor referencing a communications end-
point (created above).

e an ioctl() command (described below).

e a device specific data structure, the type of which is a
function of the ioctl() command we are sending. The
kernel fills in the fields of this data structure that are
relevant to the command sent and returns the structure
to us.

ifchk sends three different types of ioctl() commands and
two different device specific data structures. The command/
data structure pairings are as follows:

6.4

SI OCA FCONF: gets a list of all network interfaces present
on the system; uses a structure of type ifconf.

SI OCG FFLAGS: retrieves network interface flags from
within the kernel; uses a structure of type ifreq.

SI OCSI FFLAGS: sets flags on a network interface; uses a
structure of type ifreq.

ifconf and ifreq structures are defined in the system header
file /usr/include/net/if.h. All ifchk IRIX invocations result
in at least two ioctl() calls; SI OCA FCONF followed by
SI OCA FFLAGS. This produces output in the general for-
mat of figure 3 above. SI OCSI FFLAGS is only called if a
promiscuous interface is to be disabled.

Flag retrieval under Linux begins the same way as un-
der IRIX with the creation of a socket via the socket() sys-
tem call (Figure 5). Linux then uses a combination of the
Netlink/Rtnetlink API and ioctl() to initially get and, if ap-
plicable, set interface flags, respectively. ioctl() under Linux
will, in certain situations, fail to detect that an interface is
in promiscuous mode. Netlink/Rtnetlink cannot be used to
disable interfaces. Because of these limitations, an approach
using both was required for ifchk Linux to satisfy all func-
tional requirements.

Netlink provides us with a method of data transfer be-
tween user and kernel space over standard sockets. In cre-
ating our socket above, we need to specify what Linux ker-
nel subsystem we wish to communicate with, which, in the
case of ifchk, is the NETLI NK.ROUTE subsystem.
NETLI NK_ROUTE allows us access to Rtnetlink, the Linux-
specific implementation of routing sockets. Routing sockets
are a method of accessing the in-kernel routing table in or-
der to add or delete routes or to request information about
a given route from the kernel. The routing table also con-
tains information on network interfaces including their status
flags. ifchk sends one Rtnetlink command, RTM.GETLI NK,

---- ioctl(descriptor, io
- interface flags retur

| k
| e
ulr
s|n
el e
rl
I
ctl
ned
I
s|s
plp
ala
clc
ele

command,
or inteface shutdown ---- |

structure) ----> | IR X or Linux |

kernel |

Figure 6: ioctl() command passing.

and uses the data structure that corresponds to that com-
mand. The command/data structure pairing is as follows:

RTM.GETLI NK: gets information (flags, etc.) about a spe-
cific network interface; uses a structure of type ifin-
fomsg.

The /usr/include/linux/rtnetlink.h system header file de-
fines the ifinfomsg structure. We then call ioctl() to disable
the interface if it is in promiscuous mode (as detected by
Netlink/Rtnetlink prior) and we are to shut it down.

At its core, ifchk uses a large for loop that iterates n times
with n being equal to the number of interfaces present on the
system as discovered, prior to loop entry, by ioctl() on IRIX
or Netlink/Rtnetlink on Linux. For each iteration through
the loop, we are testing the flags associated with the current
interface under examination and printing its state (Figure 3).
In addition to this, we shut that interface down, if applicable.
Figure 7 illustrates the main loop.

for (n=firstinterface; n !'= NULL; n++)
{
get interface status;
if (promiscuous && disable interface)
print interface status;
di sabl e interface;
}
el se
{ o
print interface status;
}
}

Figure 7: Pseudocode of main program loop.

At loop exit, we perform house cleaning chores such as
memory deallocation and the closing of all open file descrip-
tors in conformance with good programming practice.

6.5

5. RELATED WORK

Here, we discuss other work related to ifchk. CPM (Check
Promiscuous Mode) and Sentinel are two such examples of
tools that perform promiscuous mode detection.

CPM [1] is a host based promiscuous mode detector that,
like ifchk, uses ioctl() system calls to print per-interface state
information. Written by the Computer Emergency Response
Team (CERT), a division of the Software Engineering Insti-
tute at Carnegie Mellon University in Pittsburgh, Pennsylva-
nia, CPM reports the number of interfaces present on the sys-
tem and then, for each interface, prints its name (e.g., ec0)
and corresponding state. Possible interface states include
Nor mal and*** | N PROM SCUOUS MODE ***. ifchk
borrows from this output format as it provides a concise
snapshot of interface operation at program runtime. This
becomes increasingly important when ifchk is run on sys-
tems with many interfaces or interface aliases. Tests with
ifchk Linux on systems with medium to large numbers of
interfaces confirm the prudence of this approach.

Sentinel [7] takes a different approach to promiscuous mode
detection in that it allows for the detection of promiscuous
interfaces on remote systems. Sentinel allows users to per-
form several different tests to probe for promiscuous mode
activity. Examples of tests, as documented by the program
author in a previous release, include the following:

e With the DNS test, Sentinel initiates numerous fake
TCP connections to nonexistent systems and monitors
the network to see if any packet sniffers that might
be running on target local systems attempt to resolve,
via DNS queries, the IP addresses of those nonexistent
systems. Sentinel will then sniff the DNS queries to
check to see if it is a target system that is requesting
name service resolution.

With the Etherping test, Sentinel transmits an ICMP
echo request message (ping) with a legitimate destina-
tion IP address but a fake destination ARP/MAC ad-

dress to a target system. If the target is not sniffing the
network, its network hardware will disregard the mes-
sage. It has been shown, however, that some Linux,
NetBSD and Windows NT target systems will, if in
promiscuous mode, read such a message and respond
to it.

e The Arp test involves Sentinel transmitting an ARP re-
guest containing a bogus destination ARP address. A
target system not in promiscuous mode would not re-
ply to such a request while a target that was in promis-
cuous mode would.

ifchk differs from these two tools in that it disables in-
terfaces that it finds in promiscuous mode, thus potentially
isolating such systems from the network, and allowing for
their subsequent analysis in an isolated environment. ifchk
also differs from the above two implementations in that it
reports per-interface ingress/egress packet counts. This is an
aid in the detection of deviations in traffic volume that are at
odds with established traffic volume trends.

6. CONCLUSIONS AND FUTURE IFCHK
DEVELOPMENT

This paper presented ifchk, a method of network interface
promiscuous mode detection and interface management. It is
a tool that can be used by system and network administrators
as an aid in securing systems and networks. It is written in C
and made available for free at http://www.noorg.org/ifchk.
A version for SGI IRIX is currently available, and a Linux
version will be released shortly.

There are infrastructural and functional additions planned
for future ifchk releases with a view toward further devel-
oping the program into a serious production level security
tool.

1. Divide ifchk source code into the following compo-
nents to facilitate program portability and modularity:

(@) A framework providing services such as program
startup, event logging, user identification and help
output.

(b) An operating system specific module that imple-
ments core interface management functionality.

A module is compiled with the framework to produce
an ifchk binary. With this design, most of the effort in
porting ifchk is limited to the creation of new modules.

2. Release a Linux ifchk port using the new modularized
program architecture as per point 1b above.

3. Turnifchk into a daemon process controlled via an ex-
ternal control utility. The signals facility will be used
to provide interprocess control between the daemon
and the control utility.

6.6

7. ERRATA

This paper has been updated since its initial presentation
on May 7th, 2004 at Student and Faculty Research Day hosted
by the Pace University School of Computer Science and In-
formation Systems.

REFERENCES

1. Check Promiscuous Mode. Open source software
available from: ftp://ftp.cerias.purdue.edu/ pub/tools/unix/
sysutils/cpm/.

2. Dhandapani, Gowri, and Sundaresan, Anupama. Netlink
Sockets - Overview. Available at http://qos.ittc.ukans.edu/
netlink/html/.

3. ethereal. Open source software available from:
http://www.ethereal.com.

4. Kuznetsov, Alexey. iproute2. Open source software
available from: ftp.inr.ac.ru/ip-routing.

5. Oualline, Steven. Practical C Programming, 3rd Edition.
O’Reilly Media Inc, Sebastopol, CA, 1997.

6. Reek, Kenneth A. Pointers on C. Addison-Wesley,
Boston, MA, 1998.

7. Sentinel. Open source software available from:
http://www.packetfactory.net/projects/sentinel/.

8. Stevens, W. Richard. TCP/IP lllustrated, Volume 1: The
Protocols. Addison-Wesley, Boston, MA, 1994,

9. Stevens, W. Richard. Unix Network Programming,
Volume 1, Sockets and XTI, 2nd Edition. Addison-Wesley,
Boston, MA, 1998.

10. tcpdump. Open source software available from:
http://www.tcpdump.org.

